Whenever waters are used for recreational, functional or aesthetic purposes, CUTRINE-PLUS offers the best solution to your algae control needs.

- Broad range algae and hydrilla control
- Tank mix compatibility
- No water use restrictions
- 9% active copper—contains no sulfates
- Will not corrode equipment
- So unique—it's patented

Specially formulated for ease of application and effectiveness in controlling bottom-growing forms of algae.

- Eliminates weed-like forms of algae such as Chara (muskgrass) and Nitella
- Controls filamentous algae at its source before surface mats form
- Economical—60 lbs treats an entire acre—no special equipment needed
- Ideal for spot treatment around piers, rafts and beaches—no water use restrictions

For Additional Information:
Call 800-558-5106
In Florida 813-584-5230

applied biochemists inc
quality chemicals for the environment
6120 W. Douglas Avenue
Milwaukee, Wisconsin 53218
The overriding concern of Florida’s aquatic plant management program has always been the need for continued adequate funding to manage the most severe aquatic weed problems. This is especially critical in light of recent results which provide the means for maintenance control programs for hydrida.

The state’s current budgetary crisis and changing governmental philosophy dictate that before seeking new tax revenues, best use of all existing resources must be assured. Are the goals and priorities which designated DNR the lead aquatic plant management agency and created the aquatic plant trust fund still guiding the program? Specific concerns are:

- Have the resources and emphasis of the Bureau of Aquatic Plant Management Bureau shifted from support to regulation?
- When funds decrease, as they have, should all programs which receive funding from the aquatic plant trust fund equally share budget cuts, rather than only operations?
- Do common state priorities for the aquatic plant management program exist?

Finally, many opinions exist concerning the organizational function and priorities of Florida’s aquatic plant management program. These concerns should be discussed and resolved in an industry-wide forum. This forum was the Aquatic Plant Advisory Council. However, philosophical changes of the Department of Natural Resources management have made relationships more adversarial. The Council should never be a rubber stamp for governmental policy, but a forum to discuss the challenges that the water resource management industry faces. Once united, the challenges can be turned into opportunities to benefit the industry and the public.

—Wendy Andrew

CONTENTS

The Hydrocharitaceae or Frog’s-bit Family by David L. Sutton 4
Lake Marion Sterile Grass Carp Stocking Project by Steven J. de Kozlowski 13
The Cabomba Color Problem by Dean F. Martin and Richard P. Wain 17
The Effect of 2,4-D Amine on the Growth of Spatterdock by Chuck Hanlon and Bill Haller .. 18

1991 FAPMS DIRECTORS

President
Dan Thayer
P. O. Box 24680
W. Palm Beach, FL 33416
(407) 687-6129

President Elect
Ken Langeland
7922 N W, 71st St.
Gainesville, FL 32607
(904) 392-9613

Treasurer
Vi. Ramey
Rte. 1, Box 217A
Micanopy, FL 32667
(904) 392-1999

Secretary
Don Doggett
5051 Nature Way
St. Myers, FL 33405
(813) 694-2174

Editor
Mike Bodle
P. O. Box 24680
W. Palm Beach, FL 33416
(407) 687-6132

Intermediate Past President
Brian Nelson
9117 Watersmeet Rd.
Tallahassee, FL 32312
(904) 488-5631

Directors-At-Large

Wendy Andrew
2379 Broad St
Brooksville, FL 34609
(904) 396-7211

Gordon Baker
P. O. Box 24680
W. Palm Beach, FL 33416
(407) 687-6130

John Layer
P. O. Box 1338
Brooksville, FL 34602
(904) 659-2389

Greg McClain
P. O. Box 440
Lecanto, FL 32661
(904) 746-2694

Paul Myers
P. O. Box 1437
Eagle Lake, FL 33839-1437
(913) 533-8882

Nancy Allen
P. O. Box 188
Brooksville, FL 34609
(904) 343-2011

Bob Rinehart
Inglis, FL 34637
Tavares, FL 32778

1991 Committee Chairman

Audit
Eric Costenmooyer
401 S. Bloxham Ave.
Tavares, FL 32778
(904) 343-2011

Governmental Affairs
Wendy Andrew
2379 Broad Street
Brooksville, FL 34609
(904) 796-7211

By-Laws
Jeff Schardt
537 E. Jennings St.
Tallahassee, FL 32301
(904) 224-8346

Equipment Demonstration
Steve Smith
P. O. Box 24680
W. Palm Beach, FL 33416
(407) 687-6135

Nominations
Brian Nelson
9117 Watersmeet Rd.
Tallahassee, FL 32312
(904) 488-5631

Historical
Bill Haller
7922 N W, 71st St.
Gainesville, FL 32607
(904) 392-9613

Program
Mike Hulon
207 W. Carroll St.
Kissimmee, FL 34741
(904) 846-5220

Editors
Mike Bodle
P. O. Box 24680
W. Palm Beach, FL 33416
(407) 687-6132

Awards
Wayne Ipsen
P. O. Box 4970
Jacksonville, FL 32232
(904) 791-2219

Local Arrangements
Gordon Baker
P. O. Box 24680
W. Palm Beach, FL 33416
(407) 687-6130

Membership & Publicity
Ken Langeland
7922 N W, 71st St.
Gainesville, FL 32607
(904) 392-9613

AQUATICS: Published quarterly as the official publication of the Florida Aquatic Plant Management Society. The Society does not warrant or imply the fitness of any product advertised or referred to in this publication, nor has it verified any of the statements made in any of the advertisements or articles. The Society does not warrant or imply the fitness of any product advertised or the suitability of any advice or statements contained herein.

1990 FAPMS, Inc. All rights reserved. Reproduction in whole or in part without permission is prohibited.

March 1991Vol. 13, No. 1

Aquatics

About The Cover
Blue darner dragonfly on waterlute.
Photo by Gene Li.
South Florida Water Management District.
West Palm Beach

The Florida Aquatic Plant Management Society, Inc. has not tested any of the products advertised or referred to in this publication, nor has it verified any of the statements made in any of the advertisements or articles. The Society does not warrant or imply the fitness of any product advertised or referred to in this publication, nor has it verified any of the statements made in any of the advertisements or articles. The Society does not warrant or imply the fitness of any product advertised or the suitability of any advice or statements contained herein.
The Hydrocharitaceae or Frog’s-bit Family

By
David L. Sutton, Professor
Fort Lauderdale Research and Education Center
University of Florida - IFAS
Fort Lauderdale, FL

Introduction
Why do hydrilla plants cause problems that are so difficult to control? Why would African elodea plants, were they introduced to Florida, be considered a major potential threat to the freshwater ecosystems of the state? For one, these plants belong to the Frogs-bit family or Hydrocharitaceae. Members of this family have been in existence over 70 million years, since the beginning of the Tertiary Era.

An understanding of common traits shared by plants of the Hydrocharitaceae may provide some insight into strategies these plants have developed to ensure their survival over the millennia. A little herbicide here and a few grass carp there probably do not present major obstacles to the long-term existence of these plants.

Classification
The Hydrocharitaceae is one of the most interesting aquatic plant families because of its diversity of species, flowering characteristics, and production of vegetative propagules. In the general classification of plants, the Hydrocharitaceae belongs to the monocotyledon group - these flowering plants characteristically having an embryo with only one cotyledon, flower parts usually in threes, leaves with parallel veins, and scattered vascular bundles.

The Frog’s-bit family includes both salt and fresh water plants. The family is comprised of 16 genera with 80 to 90 species indigenous primarily to waters of the warmer regions of the world, with a few species extending into temperate climates.

The various genera of the Frog’s-bit family have previously been separated by some taxonomists into four distinct families, the Elodeaceae, Vallisneriaceae, Halophilaceae, and Thalassiaceae. However these genera share the single characteristic of epigyny (Figure 1), a type of flower arrangement where the petals, sepals, and stamens grow upon the top or appear to grow on top of the ovary, suggesting a natural family unit, the Hydrocharitaceae. The differences among the genera allow the Frog’s-bit family to be separated into five subfamilies: (1) Hydrocharitoideae, (2) Vallisnerioideae, (3) Hydrilloideae (=Elodeoideae), (4) Thalassoideae, and (5) Halophilioideae.

Colonization and Naturalization
Species of the Frog’s-bit family have been introduced to many countries around the world and are now naturalized in a number of them. Often these introductions have resulted in the plants becoming weed problems. Even though this family contains several species of some of the most troublesome aquatic plants in the world other species are widely cultivated for their ornamental value, especially for use in home aquaria. Some species in this family are among the most beneficial plants for aquatic systems because they enhance water quality, and provide shelter and nesting sites for a myriad of aquatic organisms.

General Plant Characteristics
Species in the Frog’s-bit family are primarily floating and submersed plants with only a few species extending their leaves above the surface of the water. The leaves are radical, crowded, or dispersed on elongated stems, and alternate to opposite or whorled. The appearance of the leaves and stems varies to such an extent that individual species of the same genus may not resemble each other, while other genera contain species quite similar in their general appearance.

Genera of the Frog’s-bit family of interest in Florida include (1) Thalassia, (2) Halophila, (3) Ottelia, (4) Limnobium, (5) Lagarosiphon, (6) Blyxa, (7) Vallisneria, (8) Egeria, (9) Hydrilla, and (10) Elodea (Table 1).

1. Thalassia - turtle-grass
In Florida, turtle-grass is the only salt water seed bearing, submersed plant with ribbon- or strap-like leaves similar in appearance to eelgrass. The strap-like leaves are relatively resistant to the destructive forces of wave and under-water currents.
1. Thalassia testudinum, plant

Turtle-grass is found in coastal areas in water to a depth of just over 4 m and often forms extensive underwater mats. Flowering and pollination occurs under water.

2. Halophilia

Plants of the genus *Halophila* are delicate, submersed, marine plants with horizontal rhizomes and leaves borne at the apex of short stems. Two species are found in the lagoons, bays, and reefs of the Florida Keys. Male and female flowers are found on the same plant (monoecious), and sometimes both are in the same sheath. Flowering and fertilization occur under water in a manner similar to turtle-grass.

3. Ottelia

Plants of the genus *Ottelia* are indigenous to Africa and Asia but have naturalized in Louisiana. These plants are separated from other members of the family because their very thin-textured leaves are mostly submersed and supported on long petioles. The leaf blades are ovate to broadly elliptical or reniform (kidney-shaped). The plants contain male and female flowers on the same plant. The flowers are fragrant and borne singly on a several-angled stalk.

These plants apparently are not yet present in Florida, nor is it known whether they pose a threat to the fresh waters of the state.

Say Goodbye To Algae!

Griffin's Hardworking K-Tea™ knocks out Algae in Reservoirs, Lakes, Ponds, Fish Hatcheries & Irrigation Canals.

K-Tea algicide is a specially formulated compound made from the copper triethanolamine complex. K-Tea effectively knocks out the various blue-green, filamentous, planktonic, and branched algae that infest bodies of water.

Here's why you should choose K-Tea for algae control:

* Knocks out algae—even on the hardest water
* Provides effective control of *Hydrilla Verticillata* when used in combination with an approved herbicide
* Treated water can be used immediately for swimming or fishing
* Available in 30 gallon drums or convenient easy to handle 2 1/2 gallon jugs
* Soluble and stable – stays in solution in all types of water and has an indefinite shelf life when stored properly
* Easy to apply with sprayer from a boat or the shore
* Non-corrosive
* Economical

Always read and follow label directions

K-TEA™ is a registered trademark of Griffin Corp.
Limnobium spongia, a portion of plant at flowering and fruiting stage

4. Limnobium - Frog's-bit
Members of this genus are perennial herbs commonly found floating in dense mats or rooted in mud in shallow areas. American Frog's-bit is native to Florida and generally not considered to be a pest plant. It may, however, form large floating mats which have the potential to cause local problems.

American Frog's-bit is often confused with waterhyacinth (Eichhornia crassipes (Mart.) Solms) because of similar leaf shape and growth habit. However, American Frog's-bit can be readily identified by an examination of the young plants which often have a thick white to purplish spongy aerenchymatous layer of tissue covering the underside of the leaf. Also, American Frog's-bit does not have the typical swollen bulbous petiole of waterhyacinth.

Small male and female flowers borne on short stalks are found on American Frog's-bit. Although male and female flowers occur on the same plant, they develop at different times to prevent self-pollination. After pollination the female flower coils downward and seed development occurs underwater. New plants form from seeds or develop at the ends of runners.

5. Lagarosiphon
This genus derives its named from the Greek word “lagaros” for thin and lanky, and “siphon” which means a tube. These plants are commonly called African elodea.

Species of this genus are native to Africa and Madagascar and they have been introduced to several countries around the world. Lagarosiphon major is considered to be the most noxious species of the group.

African elodea plants are very similar in form and growth habit to hydrilla. In countries where these plants have naturalized, they cause problems similar to those of hydrilla. African elodea plants are presently not found in Florida, but are considered to be a major threat if they were introduced; therefore, they are banned in the state.

6. Blyxa
Members of the genus Blyxa, of which there are about 10 species, are submersed plants with a rosette growth habit and 20 to 50 leaves per crown. The species are indigenous to tropical areas of Asia and Africa. Leaves of these plants are narrow, sessile, pointed at the apex, and may grow up to 1.5 m in length.

B. auberti is the best species for aquarium use. This species grows in mountain streams, tolerates low temperatures, and appears to be the most hardy in this genus. These plants are not known to occur in Florida but are present in lakes and rice fields of Louisiana. Because of their preference for warm water, these plants may grow quite well in Florida.

7. Vallisneria - eel-grass
The genus is named in honor of the Italian botanist - Antonio Vallisneria.

The species are very popular in the aquarium industry. These plants with their strap-like leaves are considered among some of the most desirable submersed plants for growth in many bodies of water. They also provide attachment sites for many micro-organisms and cover for small fishes. Plants in this genus are generally not considered pests although at times they may cause minor problems.

Florida has two native Vallisneria species: eel-grass and Jungle-val. Eel-grass, also called water-celery and tape-grass, is found throughout much of North America, while Jungle-val appears to be limited to the warmer waters of the continent. These two species are very similar in appearance, with the Jungle-val exhibiting a much wider leaf blade than eel-grass.

Female flowers are formed at the end of a coiled stalk and float on
The enemy's up ahead. Aquatic weeds. But so are your desirable native plants. So how do you target just the weeds? Not with expensive mechanical harvesters. Not with grass carp. But only with Sonar® aquatic herbicide and your management skills.

Sonar puts you in command of your aquatic environment. When applied with the right formulation at the proper times, it strikes down enemy weeds. Tough weeds such as hydrilla, milfoil, duckweed, fanwort, coontail and pondweed. And controls them a full year or longer with one application.

But unlike harsh methods, Sonar provides selective control and leaves your desirable vegetation alone. Without harming your aquatic environment, water chemistry or quality. Or depleting dissolved oxygen. Or restricting swimming, fishing or drinking.

Ask your Sonar aquatic specialist for a free water survey to match a Sonar program to your needs. Or for a free brochure, write to:
Sonar Guide
P.O. Box 864
Brookfield, WI 53008-0864.

*Trademark of DowElanco
the surface. The coiling of the stalk helps to ensure that the flower will not become submerged during wave action or periods of sudden increases in water level. Pollen is formed in small capsules located underwater at the base of the plant. When the male flowers are mature, the capsules float up and release their pollen on the surface. The pollen is distributed by wind and wave action to the waiting female flowers. On Lake Okeechobee it is not uncommon to see large mats of white eel-grass pollen that have been blown into sheltered areas.

Reproduction is by seeds and also by formation of new plants from rhizomes. Elongated pods with a tough outer coat may contain several hundred seeds surrounded by a sticky, gelatinous material. Seeds sprout under water.

8. Egeria

The genus *Egeria* contains only one species, *E. densa*, which is indigenous to South America. This species is often commonly called Brazilian elodea, anacharis, or egeria. Egeria is one of the most favored and widely sold of aquatic plants for home aquarium use. It is generally sold under the name “anacharis”. Egeria is commonly collected from wild populations for sale in the aquarium industry. The stems and leaves of egeria are eaten by coots, gallinules, and ducks. It is considered a beneficial plant in many locations.

Egeria was introduced to North America from South America. In Florida, it grows well in cool, clear spring-fed water, and is found mainly in the northern and central portions of the state, generally causing few problems. However, Egeria is considered a weed in several large lakes in South Carolina and a few other locations. Elsewhere it has naturalized but not extensively.

Egeria plants have long, branching stems and very soft leaves in whorls of four to eight per node. The flowers of egeria are strictly unisexual with three petals about 10 mm long. The flower extends above the surface on a short pedicel about 2 cm above the surface of the water and is pollinated by insects.

Plant fragments of egeria will regenerate new plants from the nodes. It produces no tubers or turions like hydrilla.
Algae control we can all live with...thanks to HYDROTHOL 191.

When you need to control algae in your lake, pond or canal, you want an algicide that’s effective without being hazardous to fish or other aquatic life forms. That’s why you should rely on HYDROTHOL 191 Aquatic Algicide and Herbicide.

HYDROTHOL 191 works quickly on contact against Cladophora, Pithophora, Spirogyra and Chara. In both still and moving water. And, when applied at the recommended 0.2 ppm, HYDROTHOL 191 won’t kill fish.

HYDROTHOL 191 is broken down by microorganisms into naturally occurring by-products based on the elements carbon, hydrogen and oxygen. It won’t leave residues, accumulate in the hydrosol or the food chain, or discolor your water.

As with any chemical product, you should read and follow label instructions carefully. Application by a certified applicator is recommended. We’ve taken great care to provide the information needed to help you enjoy algae free water in an environmentally compatible way. Talk to your distributor or ATOCHEM Representative today about HYDROTHOL 191.

Aquatics

Hydrilla verticillata, plant and turion

9. Hydrilla
The genus derives its name from the Greek "hudor" for water. This genus contains a single species, *H. verticillata*, but many races or varieties occur throughout the world primarily in temperate and tropical countries. Hydrilla is thought to have originated in warmer regions of Asia, but it has been spread by man to many countries.

Hydrilla grows in rivers, springs, sinks, lakes, and is adaptable to a variety of habitats. It was brought to the US in the late 1950s and sold as "starvine" and "oxygen plants". Shipment of hydrilla into most states in the US is now prohibited. Hydrilla is considered one of the most troublesome submersed aquatic plant in many countries around the world.

Hydrilla grows completely submersed, although in thick surface mats branches may be forced out of the water occasionally by stems growing up underneath them. Hydrilla stems near the surface have many branches with short nodes, but in deep water, sparsely branched stems with long internodes occur. Leaves are in whorls of three to five and have sharply toothed margins and spines on the underside of the midrib, a good characteristic to distinguish it from superficially similar *Egeria densa*. Hydrilla is rough in texture, and may cause allergic reactions in some individuals.

Hydrilla plants may be dioecious or monoecious. Flowers of hydrilla arise singularly from a bract near the growing tip. The inconspicuous flower has three petals. Female flowers extend to the surface of the water on a slender peduncle where the delicate petals forming a depression held in place by surface tension. In the leaf axis, the male flower forms a capsule which floats to the surface when mature. The capsule releases its pollen into the air which then rains down upon the receptive female flower. The pollen must land in the small depression created by the petals of the female flower for fertilization to occur (Figure 2). Seed production and subsequent germination appears to be minimal for the monoecious biotype of hydrilla found in some part of the US. Seeds are not formed by pistillate dioecious hydrilla plants growing in Florida.

Reproduction is primarily vegetative. New plants develop from nodes of the stem and rhizomes, from auxiliary turions, and subterranean turions commonly called "tubers". Diving ducks and coots consume the vegetative parts of hydrilla. Hydrilla is considered an extremely important plant by some wildlife personnel for use in some waterfowl management programs.

Figure 2. Female flowers of monoecious hydrilla filled with pollen. Note pollen also floating on the surface of the water.

10. Elodea
The genus derives its name from the Greek for "elodes" meaning a marsh, a common habitat for these plants. These plants are commonly called by their generic name. In older literature the genus is termed *Anacharis*.

The genus contains about 12 species native to North and Central America. A couple of species have been introduced throughout the world and cause problems in some countries. Florida does not appear to offer suitable habitat for growth of these plants, but they may cause problems in other parts of North America.

An interesting situation occurred after *Elodea canadensis*, commonly called Canadian Pondweed, was found in Down, Ireland in 1836. By the end of the century this species had made its way into a number of waterways throughout Europe and created problems in many areas. Suddenly, for no apparent reason, Canadian Pondweed died back and today is commonly found in no more abundance than native...
Clearly, it just makes good sense to be careful when controlling aquatic weeds!

When you're controlling weeds in your lake, pond or canal, it's crystal clear that the last thing you want is an herbicide that'll harm your family or the environment. That's why you should rely on AQUATHOL Aquatic Herbicide.

AQUATHOL works quickly and effectively against hydrilla and other undesirable weeds. In both still and moving water. It works only in the areas where it's applied. And is selective, so it won't harm emergent plant species you haven't targeted.

What's more, AQUATHOL is broken down by microorganisms into naturally occurring by-products based on the elements carbon, hydrogen and oxygen. It leaves no residues and won't accumulate in the hydrosoil or the food chain.

As with any chemical product, you should read and follow label instructions carefully. We've taken great care to provide the information needed to help you protect your family and the environment while improving the quality of your life. AQUATHOL's the right choice for aquatic weed control. Clearly. Talk to your distributor or ATOCHEM Representative today about AQUATHOL.

aquatic plants in these waterways. Because of this rapid decline in the Canadian Pondweed population, there are some individuals who would argue that large populations of naturalized "exotics", given enough time, may collapse on their own.

The similar appearance of hydrilla, egeria, and elodea has contributed to some of the nomenclatural confusion found in the literature. For example, hydrilla in the late 1950's and early 1960's was called Florida elodea because at the time no elodea species were known to occur in Florida and early examination revealed its close association to elodea plants. Later, Florida elodea was correctly identified as hydrilla - a species with anatomical characteristics and growth habits remarkably different from the elodeas.

Acknowledgements

Contribution of the University of Florida's Fort Lauderdale Research and Education Center. Published as Journal Series Number N-00327 of the Florida Agric. Exp. Sta. This material is based upon work supported in part by USDA-ARS and University of Florida, Institute of Food and Agricultural Sciences Cooperative Agreement No. 58 43YK-9-001. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the USDA.

References

Table I. Plants in the Hydrocharitaceae or Frog's-bit family of interest to Florida.

<table>
<thead>
<tr>
<th>Genera</th>
<th>Important species</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Marine plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Thalassia</td>
<td>T. testudinum koenig.</td>
<td>Turtle grass</td>
</tr>
<tr>
<td>2. Halophila</td>
<td>H. engelmannii Ascher</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>H. baillonis Ascher</td>
<td></td>
</tr>
<tr>
<td>B. Fresh water, sometime brackish plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Limnobium</td>
<td>L. spongia (Bosc.) Steud.</td>
<td></td>
</tr>
<tr>
<td>5. Lagarosiphon</td>
<td>L. major Ridley</td>
<td></td>
</tr>
<tr>
<td>7. Vallisneria</td>
<td>V. americana Michx.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>V. neotropicalis Marie-Victorian</td>
<td></td>
</tr>
<tr>
<td>9. Hydrilla</td>
<td>H. verticillata (L.f.) Royle</td>
<td></td>
</tr>
<tr>
<td>10. Elodea</td>
<td>E. nuttallii (Planch.) St. John</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>E. canadensis Rich. in Michx.</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>E. bifoliata St. John</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>E. longivaginata St. John</td>
<td></td>
</tr>
</tbody>
</table>

Aquatic weed control headquarters.

800-346-7867

Spray guns, pumps, tanks, fittings, hose and complete systems...we have what you need for aquatic weed control. Call toll-free and order today!
Lake Marion is the largest and most heavily used lake in South Carolina. Covering 110,600 acres, Lake Marion is part of a two-lake complex (Figure 1) which also includes Lake Moultrie (60,400 acres). Together they are commonly referred to as the Santee Cooper Lakes, famous for supporting the first known reproducing population of landlocked striped bass. The lakes were created in 1941 by the South Carolina Public Service Authority (Santee Cooper) as a public works project to provide a source of inexpensive hydroelectric power, flood control, and to improve navigation. Now they support many more uses and are an important recreational and economic resource to the state.

Because of its location in the coastal plain, Lake Marion is relatively shallow with most of the lake less than 15 feet deep. The lower portion (below the I-95 bridge) is characterized by its large expanse of open water and numerous embayments, while the upper portion is characterized by its shallow water (averaging six feet deep) and unique combination of open water “flats” and permanently flooded stands of bald cypress and water tupelo. The combination of shallow water, mild climate, and national popularity as a premiere fishing lake make Lake Marion an ideal target for major aquatic plant infestations.

However, it took almost 23 years before submersed aquatic plants really became a problem. Brazilian elodea (*Egeria densa*) was first discovered in Lake Marion in 1965, and by 1980 almost 6,000 acres of open water were infested—mostly in the popular upper lake area. Although funding for control operations during this period was limited, management was generally successful because applications of approved aquatic herbicides in the spring usually provided relief for the rest of the year. However, what appeared to be a bad, but manageable, aquatic weed problem at the time was to quickly evolve into every lake manager’s worst nightmare, a terrible and apparently unmanageable aquatic weed problem.

In 1982, hydrilla (*Hydrilla verticillata*) was discovered growing adjacent to a fishing camp in the...
upper lake. Despite attempts to stop its growth and spread by large-scale herbicide applications, hydrilla rapidly replaced Brazilian elodea as the dominant submerged aquatic species and spread into previously uninfested waters. By 1987, hydrilla occurred in over 13,000 acres of both lakes and was most concentrated in the upper portion of Lake Marion.

Large-scale herbicide applications that proved effective on Brazilian elodea had limited effect on hydrilla. Hydrilla was more resistant to aquatic herbicides and regrew more quickly than Brazilian elodea. Herbicides that require a long contact time and which proved effective on hydrilla in the relatively stagnant lake systems in Florida, were ineffective in upper Lake Marion where inflow from upstream rivers allowed only limited contact time. Where herbicides were effective, they were very expensive; hydrilla regrowth was rapid; and hydrilla continued to spread, threatening at least half the water body and all of its high-use shoreline area. An alternative management strategy was clearly needed.

The South Carolina Aquatic Plant Management Council, a multi-agency board charged with coordinating aquatic plant management operations in the state's public waters, established a special task force in 1987 to review the weed problem on Lake Marion and to recommend a management strategy. After considering numerous management alternatives, the task force recommended an integrated control strategy using a combination of approved aquatic herbicides and triploid (sterile) grass carp. This same approach had been used successfully on many smaller lake systems since 1985 when sterile grass carp were first approved for use in the state. However, if implemented this would be the largest lake in the state, and in the country, to be stocked with sterile grass carp.

Public meetings were held around the lake and input to the draft plan was solicited from natural resource agencies, environmental organizations, fishing clubs, and lake-associated interest groups. Support for the stocking plan was overwhelming, and in 1988 the S.C. Aquatic Plant Management Council, with consent from the S.C. Wildlife and Marine Resources Commission, gave final approval for the overall management strategy and stocking plan.

The timing and rates selected for stocking grass carp in Lake Marion were based on prior experience in South Carolina lakes and the experience of stocking efforts in other states. The stocking plan targets the upper lake area and provides for the release of only sterile grass carp of at least 10 inches in length at a rate of 25 fish per vegetated acre. Based on an estimated 12,000 acres of hydrilla and Brazilian elodea in
upper Lake Marion, a total of 300,000 fish will be required. Due to limitations on funding and availability of sterile grass carp, the stockings will be conducted incrementally with 100,000 fish released each year for three consecutive years (Figure 2). Stocking areas were selected based on the abundance of and access to hydrilla infestations and by identifying coves and other restricted areas where fish movement might be limited, therefore providing the possibility of located control from each year’s release. Subsequent stockings will depend on the extent of aquatic plant control resulting from the first three years’ effort.

Operational costs for the entire stocking project will total about $1.2 million with funding provided by the U.S. Army Corps of Engineers (50%), S.C. Water Resources Commission (32%), and Santee Cooper (18%). In conjunction with the stocking effort, about $600,000 in associated studies are planned to monitor 1) the abundance and distribution of aquatic plants (aerial photography); 2) lakewide movement of the grass carp (radio telemetry); and 3) changes in native fish populations. Because of the national significance of this project, these studies are being funded and coordinated by the U.S. Army Corps of Engineers’ Waterways Experiment Station in Vicksburg, Mississippi. Santee Cooper is also monitoring water quality conditions in the upper lake area as part of their routine monitoring program.

The stocking project is being coordinated by the S.C. Water Resources Commission. All the fish are being purchased from a consortium of three suppliers located near Lonoke, Arkansas—J. M. Malone and Son Enterprises, Hill’s Farms.
Distributors, and Keo Fish Farms. Before the fish are released into the lake they are tested for sterility by the suppliers, the U.S. Fish and Wildlife Service in Stuttgart, Arkansas, and finally by the S.C. Wildlife and Marine Resources Department in Columbia, South Carolina. In addition, the fish are carefully inspected by the S.C. Water Resources Commission to ensure that they are a minimum of 10 inches in length.

The project is now in its second year and, except for some unexpected setbacks and minor adjustments, is being carried out as originally planned. While it is too early to expect any significant results, unofficial reports of localized weed control by the fish have been noted. Furthermore, preliminary results from the radio tracking studies indicate that the grass carp are remaining in the general target area of upper Lake Marion and that most of the fish appear to prefer the open water areas near the release sites.

Unfortunately, any project of this size is bound to encounter some unforeseen problems. Extremely hot weather in late April and May 1989 created high water temperatures and low dissolved oxygen conditions resulting in two separate fish kill events in the upper lake area, killing an undetermined number of stocked grass carp. Furthermore, on September 22, 1989, Hurricane Hugo, the largest storm ever recorded in South Carolina, hit the coast near Charleston and plowed a path of destruction directly over Lake Marion on its way inland. The result was the state's largest, most widespread fish kill ever documented. Unfortunately, an accurate assessment of the storm's impact on the grass carp stocked in 1989 is not available, and reports provide conflicting results. The official fish kill report indicates that no grass carp died from Hugo; however, only one of the six radio tagged grass carp apparently survived the storm. Because of the uncertainty of grass carp survival during 1989, the stocking plan has been modified to allow for a fourth year of stocking, if needed, to replace fish possibly lost due to Hurricane Hugo and the spring fish kill events.

Despite the setbacks, the grass carp stocking project in Lake Marion is progressing as planned with continued support and commitment from state and federal agencies, and most importantly from the public. Sterile grass carp have proven to be an effective tool for long-term control of nuisance submersed aquatic plants in small lake systems, and we are hopeful that they will prove just as effective in much larger lake systems like Lake Marion.
The Cabomba Color Problem
Dean F. Martin and Richard P. Wain
Institute for Environmental Studies, Department of Chemistry, University of South Florida, Tampa, Florida

Hanlon (1990) summarized some of the characteristics of Cabomba (fanwort): the distribution in the United States, the popularity as an aquarium plant, the spread due to careless dumping of aquaria, methods of reproduction, the increasing abundance in Florida, though it is not yet regarded as a nuisance plant. It provides fish habitat, but no wildlife value has been reported.

He also described green-cabomba (Cabomba caroliniana) and C. pulcherrima (purple cabomba). He added, “There is some question whether green-cabomba and red-cabomba are the same or separate species.”

This distinction is what might be called the cabomba color problem, the genetic relationships between at least three taxa of cabomba, but it is a problem that seems to have been solved.

Three taxa are commonly reported in the literature for United States distribution: Cabomba caroliniana var. caroliniana Gray (fanwort), C. caroliniana var. multipartita (green fanwort), and C. pulcherrima (Harper) Fass. (purple fanwort) (cf., Wain et al., 1983). Variety multipartita was thought to be a cultivar form of C. caroliniana because of its association with the aquarium industry. And C. pulcherrima is a purple colored segregate of C. caroliniana (Fassett, 1953).

A previous study was concerned with determining the genetic relationship among the three taxa (Wain et al., 1983). Genetic differentiation can be detected electrophoretically as differences in allele frequencies, or in the most extreme case as a fixation of alternate alleles (Wain et al., 1985). Genetically differentiated populations often differ physiologically, and thus, they may have notable impacts on biological and chemical control programs.

The sample of genetic markers that we examined indicated that the three taxa of cabomba were genetically indistinguishable (Wain et al., 1985). This means that C. caroliniana and C. pulcherrima are most likely part of a common gene pool, and that the apparent differences are probably best explained in terms of environmentally induced differences. We also believe that electrophoresis can be a very useful tool for providing the basis of making this judgment or related ones.

References

The Effect of 2,4-D Amine on the Growth of Spatterdock

by
Chuck Hanlon and Bill Haller
University of Florida - IFAS Center for Aquatic Plants
Gainesville, FL

Spatterdock (Nuphar luteum) is a native emergent aquatic plant distributed throughout the United States. It commonly grows in one to three meters of water, rarely requires control, is considered beneficial habitat for fish and wildlife and is a dominant plant in many Florida lakes such as Orange and Kissimmee.

Waterhyacinths and hydrilla are frequently found in many of the same lakes as spatterdock and responsible agencies within the state are attempting to control these exotic hydrophytes under maintenance control programs. In lakes where exotics are frequently sprayed, fishermen, lake residents and fish camp operators often complain that spray crews are "destroying the pads." However, maintenance control of waterhyacinths and hydrilla has been used for the past three years in Orange Lake and visual inspection of the spatterdock community in the lake indicates that despite the use of 2,4-D and sonar, there has not been a decrease of spatterdock, in fact spatterdock may have actually increased in coverage as water levels in the lake have decreased during this time.

In the March 1990 issue of AQUATICS we described our initial research project concerning 2,4-D and spatterdock. Two months after spatterdock was treated with single applications of 0, 1, 2, 3, and 4 lbs/A 2,4-D amine, we found it was recovering from any initial injury, and the numbers of leaves in the treated plots were not significantly different from the check plot. The average weight per leaf in the treatment plots was however, somewhat lower than in the check plot, probably due to the regrowth of young leaves from the spatterdock rhizome. As described in the previous AQUATICS (March 1990) article, a second study was set up in Orange Lake to examine what long term effect 2,4-D has on spatterdock since little quantitative data has been published on these interactions thus far. A large uniform stand of spatterdock was located in Orange Lake, Florida and four 0.25 acre plots with an average depth ranging from two to three ft were established on September 28, 1989. Three of the four plots were randomly treated with either 2.0, 3.0, or 4.0 lbs per acre of 2,4-D amine. The fourth plot was left untreated and served as a control.

One day prior to treatment, a one-by-three meter PVC floating frame was positioned in five different areas inside each plot. All emerged leaves inside the frame were counted and the leaf stems were cut just below the point of attachment to the leaf. Leaves were then placed in mesh bags, oven dried for a minimum of 72 hours at 80 C and dry weights were determined. Two additional harvests, similar to the first, were conducted at 44 and 235 days after treatment (DAT).

After two weeks, the effects of 2,4-D were visible, (Figure 1) however, no rate dependent effect was observed since the degree of epinasty and leaf chlorosis was similar in all treated plots. During this time it would be easy for an individual to look at the treated pads and conclude that the spatterdock was damaged by the treatment.

Forty-four days after treatment, the number of leaves/m² in the control plot was similar to the treated plots, however the total biomass and the average weight per leaf in the control plot was greater. By 235 DAT water levels in the lake had dropped considerably. Portions of the control, two and three lbs/A plots were either dry or in very shallow water while there was approximately one ft of water covering the four lbs/A plot. There was no difference in the number of leaves/m² in the control plot and the plots treated with two and three lbs/A 2,4-D. Fewer leaves were harvested from the four lbs/A plot. Since this plot was in deeper water, more newly-formed young leaves were still submersed and therefore not included in the harvest. All plots had a similar total biomass (Table 1), however, the average individual weight per leaf in the four lbs/A plot was heavier than the control but similar to the plot treated with two lbs/A 2,4-D. From these data, it appears a single ap-

Figure 1. Spatterdock untreated control (left), and treated plants (right). Photo by C. Hanlon
Application of 2,4-D amine at rates of two to four lbs/A may initially reduce the vigor of the spatterdock stand, but long term results show there is no significant impact on the number of leaves/m² or leaf biomass. During the course of this study, we have observed mats of waterhyacinths invading and crowding out spatterdock stands creating conditions unfavorable for spatterdock growth. When dense waterhyacinths mats are sprayed inside these spatterdock stands, the waterhyacinths die and large holes in what was once a uniform stand of spatterdock are created as the waterhyacinths decay (Figure 2). While decomposing underwater, anoxic conditions may occur in the hydrosol. Although rhizomes can actively grow under low oxygen conditions (zero to one percent oxygen), oxygen benefits new leaf growth (Laing 1940). Therefore, new leaf development from underground spatterdock rhizomes may be inhibited during low oxygen conditions, but eventually lateral development of new spatterdock

Figure 2. Time series showing the effect of spraying in spatterdock beds.

Hello Komeen®,
Goodbye Hydrilla

Introducing Griffin’s Hardworking Aquatic Herbicide

Controlling Hydrilla Verticillata requires Komeen®, the effective aquatic copper herbicide.

Here’s why
* Cost less per treated acre than standard copper/organic herbicides
* Field tested and proven the effective copper herbicide for hydrilla control
* Much lower fish toxicity than other soluble copper chemicals
* Absorbed faster by the plant tissue than other forms of copper
* Highly effective when applied alone or in combination with other aquatic herbicides
* May be combined with other registered herbicides
* Treated water can be used immediately for swimming or fishing
* Long shelf life
* Excellent stability

Always read and follow label directions.
Komeen® is a registered trademark of Griffin Corp.
plants will occur and refill the holes created by competition from waterhyacinths (Figure 2).

It has been impossible for us to find anything other than short term impacts of single applications of 2,4-D on spatterdock. These results agree with clipping and spraying studies conducted in England (Barrett 1974). As a result, our future research will address the issue of multiple applications of 2,4-D and its effect on the survival of this plant.

Conclusions

When mats of waterhyacinths, growing inside spatterdock stands, are sprayed with 2,4-D they die and are responsible for the large holes people often observe inside these spatterdock stands. Also, in the first 2 to 8 weeks after spraying, spatterdock plants often look damaged and appear to be dying. Based on these observations it is easily concluded by the public that "you are killing the pads" but in fact you are not.

Table 1. The effect of 2,4-D on the number of spatterdock leaves and biomass (grams dry wgt.) 44 and 235 days after treatment (DAT). Values in a column followed by the same letter are not significantly different (p < 0.05).

<table>
<thead>
<tr>
<th>HARVEST</th>
<th>44 DAT</th>
<th>235 DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE LEAF NUMBER / m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>14 (a)</td>
<td>30 (a)</td>
</tr>
<tr>
<td>2</td>
<td>11 (b)</td>
<td>31 (a)</td>
</tr>
<tr>
<td>3</td>
<td>14 (a)</td>
<td>28 (a)</td>
</tr>
<tr>
<td>4</td>
<td>17 (a)</td>
<td>24 (b)</td>
</tr>
<tr>
<td>AVERAGE WEIGHT / m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>50 (a)</td>
<td>84 (ab)</td>
</tr>
<tr>
<td>2</td>
<td>26 (b)</td>
<td>102 (a)</td>
</tr>
<tr>
<td>3</td>
<td>35 (b)</td>
<td>73 (b)</td>
</tr>
<tr>
<td>4</td>
<td>42 (a)</td>
<td>90 (a)</td>
</tr>
<tr>
<td>AVERAGE WEIGHT / LEAF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3.4 (a)</td>
<td>2.8 (a)</td>
</tr>
<tr>
<td>2</td>
<td>2.5 (b)</td>
<td>3.3 (ab)</td>
</tr>
<tr>
<td>3</td>
<td>2.5 (b)</td>
<td>2.6 (a)</td>
</tr>
<tr>
<td>4</td>
<td>2.6 (b)</td>
<td>3.8 (b)</td>
</tr>
</tbody>
</table>

Acknowledgements

We appreciate the assistance of Wayne Corbin, Darrell Blackhall and Matthew Cole of the St. Johns River Water Management District. This project is partially funded by University of Florida (IFAS), and the U.S. Department of Agriculture (ARS) Cooperative Agreement No. ARS 58-43YK-9-0001.

References

Spray Equipment Designed for Aquatic Use

by Aquatic Applicators from

Spray Equipment Designed for Aquatic Use by Aquatic Applicators from

D-30/50 Aquatic Spray Unit

Applied Aquatic Management, Inc. offers a complete line of spray systems for the aquatic applicator. Tank spray systems for boat or truck are available in a variety of tank capacities and pump types.

For additional information or quotation call or write:

Applied Aquatic Management, Inc.
P.O. Box 1437
Eagle Lake, FL 33839
Phone (813) 533-8882
IMPROVE HERBICIDE PERFORMANCE WITH SURFACTANT PH™

- Wetting Agent
- Buffering Agent
- Conditioning Agent

Many herbicides will work better in a spray solution with the pH adjusted. Surfactant PH™ will lower the pH of alkaline waters.

UPCOMING MEETINGS

- **March 12-13**
 Florida Aquatic Plant Review and Short Course, TREEO Center, University of Florida, Gainesville. Registration $15.00 ($20.00 after 3/1/91), Center for Aquatic Plants, Gainesville.

- **March 14-15**
 Western Aquatic Plant Management Society annual meeting, Stouffer Madison Hotel, Seattle, Washington.

- **March 17-18**
 Midwest Aquatic Plant Management Society annual meeting, University Place Holiday Inn, East Lansing, Michigan.

- **July 14-17**
 Aquatic Plant Management Society annual meeting, Hyatt Regency Dearborn, Dearborn, Michigan.

1991 ANNUAL MEETING PREPARATIONS

October may seem a ways off, but it’s never too early to prepare for the FAPMS annual meeting. We’ll be back in Daytona Beach this year and should all be thinking about Applicator of the Year nominations and toting our cameras everywhere to snap award-winning shots. Somebody’s got to challenge multi-year winner Wendy Andrew in the photo contest!

DNR AQUATIC PLANT BUREAU NO LONGER FACING AXE

In early January, incoming Florida Governor Lawton Chiles asked all state department heads to identify programs amounting to five percent of their respective budgets which could be eliminated. Executive Director Tom Gardner, at the Department of Natural Resources, pinpointed the Bureau of Aquatic Plant Management, and its associated programs, for elimination. In late January, however, Gov. Chiles contacted Gardner to say that the Bureau of Aquatic Plant Management would not be listed among the state programs to be eliminated. Certainly the work of this Bureau has shown itself to be necessary and effective. All of the Bureau employees, along with the rest of us, can breathe a sigh of relief, at least for the time being.

1989 FLORIDA DNR AQUATIC PLANT SURVEY AVAILABLE

The 1989 Florida DNR aquatic plant survey has been published and is available from the Bureau of Aquatic Plant Management, Tallahassee. The 1989 survey has data for all species encountered in public waters statewide. The 1990 survey should be published within the next two months. The 1990 survey has data for exotic species only. The 1990 data show new record lows for water hyacinth and waterlettuce populations, less than 1200 and 1500 acres statewide, respectively! Hydrilla’s another story, however. Insufficient funding has led to an increase in hydrilla in Florida. In 1989, 44,000 acres of hydrilla were found. In 1990, this figure increased to over 57,000 acres. Let’s hope that discussions with legislators will lead to funding that will be sufficient to protect Florida’s waters!

ANOTHER AQUATIC PLANT VIDEO AVAILABLE

“Clear Waters — Managing South Florida’s Aquatic Plants,” a 1990 video production of the South Florida Water Management District, is available. The 23-minute program details how and why exotic plants are managed in southern Florida. Aquatic and terrestrial (i.e., melaleuca) exotics are included along with current control methods and management philosophy. The program was developed with the legislative, technical and regulatory communities as its “target” audiences, along with the general public. Copies are available from Mike Bodle, SFWMD, P.O. Box 24680, West Palm Beach, FL 33416-4680.
IFAS. CENTER FOR AQUATIC PLANTS REGIONAL CERTIFICATION TRAINING WORKSHOPS

In response to many requesting and increasing budget problems at the state, county, and local level, IFAS will conduct three regional certification training workshops. By bringing training to various parts of the state we hope to make training available to individuals whose budgets do not permit traveling to shortcourses in Gainesville. Local arrangements will be provided by faculty in Cooperative Extension Service Offices. Information presented will be at the basic level to prepare people for taking the certified pesticide applicator examination for Category Number 6 - Aquatic Pest Control. Attendees should pass the Core exam and study training material prior to the workshop. Tests will not be administered the day of the workshop but can be scheduled at a later date by contacting the appropriate Cooperative Extension Service Office. Continuing Education Units (CEUs) will also be available for certified applicators who wish to use one of these workshops as a refresher course. SPACE MAY BE LIMITED, SO PLEASE CONTACT US IN ADVANCE IF YOU PLAN TO ATTEND.

TENTATIVE PROGRAM

8:00-8:30 Registration
8:30-10:00 Overview of Aquatic Plant Management - Ken Kangeland

10:00-12:00 Aquatic Plant Identification Vernon Vandiver
LUNCH
12:00-2:00 Applying the Right Amount of Herbicide - Richard Cromwell

Locations, dates, and local contacts are as follows:

West Palm Beach, Clayton Hutcheson Agricultural Services Center, April 9, 1991, Contact: Scott Charbro 407/996-1655.
Sarasota/Bradenton, Airport Authority, May 7, 1991, Contact: Phyllis Gilreath (Manatee Co.) 813/951-4240 or Mike Holsinger (Sarasota Co.) 813/951-4240.

FAPMS MEMORABILIA MEMBERSHIP SURVEY

The preference of the FAPMS membership is needed concerning whether the Society logo should be changed and what items are wanted for future Society memorabilia. Please complete the following survey and send to: Nancy Allen, P.O. Box 188, Inglis, FL 32649. Indicate whether you’d buy any of the suggested items with a “yes” or “no.” Be sure to suggest any items that are not listed.

Do we need new Society memorabilia this year? __________ (Y/N)
Would you buy Society memorabilia this year? __________ (Y/N)
Should Society logo (see p. 3) be re-drawn? __________ (Y/N)
Do you prefer:
T-shirts __________ (Y/N) __________ (Sizes) __________ (Colors)
Golf shirts __________ (Y/N) __________ (Sizes) __________ (Colors)
Patches __________ (Y/N) Pins __________ (Y/N)
Stickers __________ (Y/N) Pens __________ (Y/N)
Hats __________ (Y/N) Other(s) __________

Agent Contacts

Androic Products
1418 Fifth St.
Hopkins, MN 55343
(612) 938-4777

Arbor Chem Products Co.
PO. Box 1567
Fort Washington, PA 19034
(215) 695-2222
708 Blair Mill Rd.
Willow Grove, PA 19090

Asgrow Florida Co.
PO. Drawer D
Hwy. 301N
Plant City, FL 33566
(813) 752-1177

Brayton Chemicals
215 N. Summer St.
PO. Box 437
W. Burlington, IA 52655
(319) 752-6354

Chem-trol Chemical Company
2770 CR 49, Rte. 1
Gilbertson, OH 43431
(419) 665-2367

Chem-Spray South
PO. Box 617
Gonzales, LA 70737
(504) 644-2816

Cornbelt Chemical Company
PO. Box 410
Hwy. 83 N.
McCook, NE 69001
(308) 345-5057

Cory Orchard Company
405 S. Senate Ave.
Indianapolis, IN 46225
(317) 634-7963

Estes Chemical Company
PO. Box 8267
Wichita Falls, TX 76307
(817) 766-0163

Estes Chemical Company
8520 Chancellor Bowl
Dallas, TX 75247
(214) 905-3887

Estes Chemical Company
1020 Santa Barbara
Mesquite, NM 88048
(505) 253-3171

Helena Chemical
5100 Poplar Ave.
Suite 5200
Memphis, TN 38137

Helena Chemical
2432 North 71st St.
Tampa, FL 33619
(813) 626-5121

Intermountain Farmers Assn.
PO. Box 30168
Salt Lake City, UT 84130
1147 W. 2100S
Salt Lake City, UT 84119
(801) 972-3009

Ostlund Chemical Company
PO. Box 5016
Fargo, ND 58106
(701) 282-7300

Red River Specialties
PO. Box 7241
Shreveport, LA 71107
(318) 424-8395

Snake River Chemicals, Inc.
118 East 12675 S.
Draper, UT 84020
(801) 572-6848

Target Specialty Products
7710 Snedeker Dr.
Boise ID 83712

Timberland Enterprises, Inc.
Airport Rd.
Monticello, AL 35765
(205) 367-8061

United Agri Products of Hawaii
PO. Box 39407
Honolulu, HI 96820
(808) 752-1177

Van Waters & Rogers
6802 City Corp. Dr.
Suite 300
Tampa, FL 33619
(813) 621-5507

Van Waters & Rogers
777 Brisbane St.
Houston, TX 77001
(713) 644-1001

Westchem Agricultural Chemicals, Inc.
PO. Box 31772
Billings, MT 59107

Wilbur Ellis Company
1200 Westlake Ave. N.
Seattle, WA 98109
(206) 284-1300

Aquatics

IFAS, CENTER FOR AQUATIC PLANTS REGIONAL CERTIFICATION TRAINING WORKSHOPS

In response to many requesting and increasing budget problems at the state, county, and local level, IFAS will conduct three regional certification training workshops. By bringing training to various parts of the state we hope to make training available to individuals whose budgets do not permit traveling to shortcourses in Gainesville. Local arrangements will be provided by faculty in Cooperative Extension Service Offices. Information presented will be at the basic level to prepare people for taking the certified pesticide applicator examination for Category Number 6 - Aquatic Pest Control. Attendees should pass the Core exam and study training material prior to the workshop. Tests will not be administered the day of the workshop but can be scheduled at a later date by contacting the appropriate Cooperative Extension Service Office. Continuing Education Units (CEUs) will also be available for certified applicators who wish to use one of these workshops as a refresher course. SPACE MAY BE LIMITED, SO PLEASE CONTACT US IN ADVANCE IF YOU PLAN TO ATTEND.

TENTATIVE PROGRAM

8:00-8:30 Registration
8:30-10:00 Overview of Aquatic Plant Management - Ken Kangeland

10:00-12:00 Aquatic Plant Identification Vernon Vandiver
LUNCH
12:00-2:00 Applying the Right Amount of Herbicide - Richard Cromwell

Locations, dates, and local contacts are as follows:

West Palm Beach, Clayton Hutcheson Agricultural Services Center, April 9, 1991, Contact: Scott Charbro 407/996-1655.
Sarasota/Bradenton, Airport Authority, May 7, 1991, Contact: Phyllis Gilreath (Manatee Co.) 813/722-4524 or Mike Holsinger (Sarasota Co.) 813/951-4240.

FAPMS MEMORABILIA MEMBERSHIP SURVEY

The preference of the FAPMS membership is needed concerning whether the Society logo should be changed and what items are wanted for future Society memorabilia. Please complete the following survey and send to: Nancy Allen, P.O. Box 188, Inglis, FL 32649. Indicate whether you’d buy any of the suggested items with a “yes” or “no.” Be sure to suggest any items that are not listed.

Do we need new Society memorabilia this year? __________ (Y/N)
Would you buy Society memorabilia this year? __________ (Y/N)
Should Society logo (see p. 3) be re-drawn? __________ (Y/N)
Do you prefer:
T-shirts __________ (Y/N) __________ (Sizes) __________ (Colors)
Golf shirts __________ (Y/N) __________ (Sizes) __________ (Colors)
Patches __________ (Y/N) Pins __________ (Y/N)
Stickers __________ (Y/N) Pens __________ (Y/N)
Hats __________ (Y/N) Other(s) __________
No other herbicide offers such effective performance.
You can clear away more than 170 emerged grasses, broadleaf weeds and brush species with Rodeo® herbicide. And once they're gone, they won't grow back. That's because Rodeo moves through the entire plant and kills it—roots and all.

Some herbicides provide only a temporary burndown. And mechanical efforts are also ineffective at providing lasting control. With Rodeo, however, maintenance becomes an economical spot treatment that takes minimal time.

There's no longer any reason for wetland sites or ditchbanks to become eyesores, health hazards or unsuitable as wildlife habitat. Rodeo is an effective, economical way to care for these areas. Just apply Rodeo a half mile or farther from a potable water intake. When this is done, treated water has no use restrictions.

Plus, with no residual soil activity, Rodeo won't leach into non-target areas. Use it with confidence to treat vegetation in and around lakes, rivers, streams, ponds, seeps, irrigation and drainage ditches, canals and reservoirs.

It's clear to see why you should use Rodeo. See adjacent list for your agent.

ALWAYS READ AND FOLLOW LABEL DIRECTIONS FOR RODEO HERBICIDE.
Run a cleaner operation with DIQUAT Aquatic Herbicide.

If undesirable aquatic weeds have you in troubled waters, make them disappear with DIQUAT Herbicide.

DIQUAT is a highly active, water soluble contact herbicide that controls a broad spectrum of floating, submerged and marginal aquatic weeds, like hydrilla, salvinia, water hyacinth and cattails.

Not only is DIQUAT fast-acting and biologically inactivated when absorbed through soil, it has no fishing restrictions.

So don't get tangled up with a bad crowd. Put them out of the picture with DIQUAT.

DIQUAT Herbicide H/A
Avoid accidents. For safety, read the entire label including precautions. Use all chemicals only as directed. Copyright © 1990 Valent U.S.A. Corporation. All rights reserved.